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A. Introduction

The results described here were carried out under the monitorship of the late

Sheldon Green. whose sudden passing away has saddened all of us. I shall miss his

ebullient sense of humor, as we all shall, and the intellectual stimulation provided bv

his large interests and expertise in scientific matters. Mostly, we will just miss him.

The two sections following this one owe their genesis to suggestions and questions

brought up by Dr. Green, and the last section of results is a natural outgrowth of

the third section. Now that I am retired, I plan to extend these investigations at my

leisure and eventually to publish them. I thought, however, that in the mean time

NASA should have a short description of whatever I have managed to ax:complish

during the period of the grant awarded to me while I was still at JHU/APL. Dr.

Green had seen most of these results pimemeal as they came out.

Be Extension of GHM to Asymmetric Tops and Diatomic

Molecules

GHM, the Generalized Hess Method, l'2'a had been worked out in detail to line

shape calculations in mixtures of diatomie and diatomie and/or monatomic molecules

and applied several times, 4'5 the most sueeessfull application being the prediction of

absorption line shapes in HF-argon mixturesfl The extension to non-linear molecules

had been left, to fllture investigations and it was one of the goals of this project to

work out the implications of an extension based on an approximation used successflflly

in other applications by Sheldon Green. 7 Tiffs is simply to assume that the quantmn



numbers for the rotation about the figure axis are good quantum numbers ill mole_-:ula.r

scattering calculations, this rotational degree of freedom acting mainly as a spectator

to the collision as far as the angular momentum coupling is concerned. The scattering

wave flmction for symmetric top-atom collisions can then be expanded in sums of total

angular momentum wave fimctions,

!fMjke) = Umemt I.JM) I jkm) I erne),
ftrl _!rn lp

which can be regarded as a representative member of a complete set. I jkra) is

a rotation wave fimction, I gme) the orbital angular momentum wave fimction and

( .... 1--) a Clebsch-Gordan coefficient, s The extension to asymmetric tops can then

carried out by expanding the asymmetric top wavefimction in symmetric top wave

fimctions:

ljm_-) = _ a,k I jkm,)
k

__, a_-,,,a;,,, = &,,.
m

This can be extended to top-diatomic molecule collisions by the replacement,

[ jkm) ---*l j(jyjD)kml = __, (jymTjDmD I jml I jrkmT) I jDmD1.
rn Trn D

Fo_nally, the extension of this model to the GHM line shape formulae is almost

trivial. The GHM collision integrals 2'3 take the form

X'tLX} = trX'/LX

jkm

where L is a collision "superoperator" or "tetradic", X t is the adjoint of the operator

X, and X has the form either of TV or T where V is a molecular velocity and T is one

of a set of operators usefifl for describing the dipole moment of molecular radiative

transitions:

C )Tjk,j,k, = gjk'ga'k'_' _ I jkm>tq(2q + 1)1/2(-1) j-m J q J'm n. -m' (j'k'm' 1,
_rt, rl_ t

where (:::) is a Wigner 3-j symbol/ This is a slight extension of the set of operators

introduced previously a'6 and assmnes explicitly that the role of the figure axis quan-

tum number, k, in the angular momentum coupling is that of a spectator. In actual

transitions, the line strength and selection rules will be governed by the HSnl-London
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factors,uwhichareflmctionsof k and k'. I_ is a dipole moment matrix dement mcorp_,-

rating the H6nl-London factors and 8, _' are the quantum mnnbers for the ottmr de-

grees of freedom - vibrational, electronic, nuclear - which are also assumed here t.o act

as spectators to tile angular monlentum coupling. Since the potential energy matrix

may depend on 6k mid _'k' parametrically, the t-matices will do so too. A glance at

section IIIC of Monchiek a shows that the couple _k plays the same role in GHM

theory as the quantum number sets a_ and a2, and so all the formulae of that section

can now be carried over immediately and apphed to symmetric and asymmetric top

line shapm with little or no change. The time required to calculate the t-matrices will

be lengthened by the extra parameters introduced by the extra degree, s of freedom

but not tile size of the calculations themselves. Consequently, a calulation such as the

one carried out for HF-argon mixtures is feasible for H20-H2 and H20-CO mixtures,

systems of astrophysical interest. Systems of interest in climate physics that could be

handled in this way are N2-H20 and O2-H20.
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C. Off-Energy-Shell collisions by the Sams-Kouri Method

I-br the (:al(:ulation of isolated line shapm, s(:attering (:alculations on the energy

shell seem to be sutfic.ient. 4`'_'(s However, for overlapping lines 9 and apparently for the

far wings of isolated lines.) ° the Fano tetradic n form of L, which is framed in terms

of off-energy-shell t-matrices, must be lined. The t-matrix is defined by

t_k_,k,(E) = (iklV Ii0k0; E) _-

where, according to the Lippmann-Schwinger equation,

(E - Ho - V) I ioko; E} + = (E - Ho) I ioko),

H0 is the free particle hamiltonian in the center of mass coordinate frame, V is the

potential energy of interaction, I i0k0; E} + is the outgoing scattering wave flmction

correst)on(ling to t.h(_ initial stat(_

(r J i0k0) = (2_)-a/2X,oe-'k°_,

)ci0 is an internal state wave flmction and t is only on the enrg¢ shell when

E = k + Exo.

The partial wave equivalent of the 3-D Lippmann-Schwinger equation 12 is

f0 °'
.,* .... V(r )i,,i,,,%,,,(r l iokoE)

r< = mln(r.r')

=

and ul and a_'_-are incoming and outgoing spherical Bessel flmctions. A simple exten-

sion of the Sams-Kouri method 12 expresses the solution as

C = -(I + B1) -1 • B °,

_0 C_"
Bib,i, I, = drco+(k_r)Vil,i,l,(r)¢_,l,(r l iokoE), x=0,1,



where _)0 and VJ1 obey almost identical Volterra equations

,,';;(,-i 'i0a:0E)=

×Z
i'l'

_r
, + .') - =?(k,',"),,,(k)',)]

t /x
V(T )il,i,l, Wi,l,(r" [ ?O_OE). 37 = O. 1

E;o)] k.n,k°= +}7 =

t_/"= h [z#£_ - n.i)]-' = *qo_t.

In the original Sams-Kouri treatment, which was restricted to the energy shell, B ° =

B 1 and g,0 = _bl. Otherwise, except for the necessity of solving two Volterra equations

rather than one, everything in the off-energy-sheU extension is much the same. The

principal advantage of this method is that the replacement of a single set of integral

equations of the Fredholm type by two sets of Volterra equations means that when

one replaces the integration over a continuum by sums over a discrete set of points;

ro < r < rm_x,the value of the auxiliary functions, _b* at a point, r, depends only on

the solution of the interior points, r' < r. The only inversion procedure ocmrrs in the

calculation of the matrix, C , which is done after all the integrations. The second

advantage is that the coding of this method is sttrprisingly simple. The main disad-

vantage, as will appear in thte discussion below, is that when one starts the solution

too far into the unclassical region, the solutions become unstable and untrustworthy.

The partial wave t-matrix element then becomes, for no internal degrees of free-

dom.

(k' I tl(E) ] _in> = (_Zl(_'r). W@+(T I kinG))..

To test the code, the first system tried was the rigid sphere potential on the energy

shell, approximated by

V = C, r < T s

= O, r > rs.

As c --+ oo, this potential becomes highly singular for this method if too mnay points

are included inside the repulvive core. Algorittrms were tested that have been stated

to take care of instabilities of Sams-Kouri flmctions in the non-classical region, but

I did not find them especially effective. The o_fly one that seemed to be reasonably

useflfl, ie that gave phase shifts agreeing to three places with the rigid sphere value. _3

was to find by trial and error a set of values of the ixritial point, r0 , for the final

solution, _b_ was relatively insensitive to r0.

A second test calculates sample off shell t-matrices for the Hg-H2 potential used

by Brmner and Shapiro 14 and, cf Figures la and lb, compares their calclflated t-
matrices and the modified Sams-Kouri values. These were computed at a single orbital



angularmomentum,/2= 5, usingthe hit or missmethodof choosingr n outlined ill tiI'_'

previous paragraph. The agreement is not perfect, but. satisfactory for exploraT.or:

,'atculations.



D. On a conjecture of Roneb

i"o describe the far wings of isolated lines, Roney l° has developed a l)erturbation

evaluation of the Fano tetradic 11 in which it is implicitly assumed the t-matrix is

a smooth and differentiable function, capable of being expanded in a Taylor series.

That is, the Fano tetradic involves terms like

for which tile derivatives

b bt, bt, a
 tk, k # Ok----;k # # /

_E ] k_=kE=k

are not generally equal - except on the energy shell, *e for dk' = dkE = dk - , there

is no one (tuantity, like the tinm delay matrix, that relates all four derivatives simply.

To illustrate this, calculations were carried out with the Sams-Kouri formalism of all

four derivatives. Figures 2a and 2b and 3a and 3b, computed for _ = 5 and t_= 12 for

the points on the energy shell, k' = kE = k , show that, at least for the derivatives

of the partial wave t-matrices, the four derivatives are not equal. They are not even

remotely similar. Implementing Roney's formulation numerically will therefore not be

a simple job. Ulfforttmately, due to the appearance of resonance spikes, it wolfld not

be an easy job either. As will be seen tiom Figures 4a and 4b, the resonance structure

is even more marked for several t-matrices displaced from the energy shell by finite

distances. This implies that only with due caution should Taylor series expansions of

off-shell t-matrix be implemented.

Since it has long been known 14'15'16 that the off-shell t-matrix is an oscillatory of

1_"and k at constant kE, it is no surprise that the derivative is also oscillatory. As noted

above, what is surprising is that for certain dir_tional derivatives, ie dk' = dk = 0,

resonance like structures are also apparent. This is especially apparent in Figures 4a

and 4b where the t-matrix is computed at finite displacements from the energy shell.

It seems tempting to relate this to coincidence of favorable and unfavorable phase

relationships between ingoing and scattered waves as k', kE, k are varied. This is a

rather interesting phenomenon in itself and should be looked into more closely.
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